Abstract

Metasurfaces provide an ultrathin platform for compact, real-time polarimetry. However, their applications in polychromatic scenes are restricted by narrow operating bandwidths that causes spectral information loss. Here, we demonstrate full-color polarization imaging using an achromatic polarimeter consisting of four polarization-dependent metalenses. Leveraging an intelligent design scheme, we achieve effective arbitrary phase compensation and multiobjective matching with a limited database. This system provides broadband achromaticity across wavelengths from 450 to 650 nm, resulting in a relative bandwidth of approximately 0.364 for full Stokes imaging. Experimental reconstruction errors for wavelengths of 450, 550, and 650 nm are 7.5%, 5.9%, and 3.8%, respectively. Performance is evaluated based on both achromatic bandwidth and crosstalk, with our design achieving three times the performance of the current state-of-the-art. The full-color, full-polarization imaging capability of the device is further validated with a customized object. The proposed scheme advances polarization imaging for practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.