Abstract

Performing correction first is the most common methods to address feature matching issues for fisheye images, but corrections often result in significant loss of scene details or stretching of images, leaving peripheral regions without matches. In this paper, we propose a novel approach, named flattened-affine-SIFT, to find widely distributed feature matches between stereo fisheye images. Firstly, we establish a new imaging model that integrates a scalable model and a hemisphere model. Utilizing the extensibility of the imaging model, we design a flattened array model to reduce the distortion of fisheye images. Additionally, the affine transformation is performed on the flattened simulation images, which are computed using the differential expansion and the optimal rigidity transformation. Then feature matches are extracted and matched from the simulated images. Experiments on indoor and outdoor fisheye images show that the proposed algorithm can find a large number of reliable feature matches. Moreover, these matches tend to be dispersed over the entire effective image, including peripheral regions with dramatic distortion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.