Abstract

Low-Power Wide-Area Network (LPWAN) is an emerging platform for Internet-of-Thing (IoT) devices to access the base station far away. However, two of the most popular IoT techniques, Bluetooth and ZigBee, can not be connected to LPWAN directly due to their very short communication distance (e.g., 30 meters). Our work, named as Symphony, implements an universal LPWAN on existing heterogeneous wireless devices by overcoming two challenges. First, Symphony achieves a long-range communication from both Bluetooth Low Energy (BLE) and ZigBee to LoRaWAN, enabling these ubiquitously deployed low-power devices to access a base station from faraway. It is achieved by exploiting Narrow-Band Communication, where the BLE/ZigBee devices generate ultra narrow-band signals (i.e., single-tone sinusoidal signals) through payload manipulation, while the LoRaWAN base station detects these signals via its demodulator, which has a high receiver sensitivity for long range communication. Second, Symphony enables concurrent transmissions from heterogeneous radios (i.e., BLE, ZigBee and LoRa) at a LoRaWAN base station. This is achieved by Cross-Technology Parallel Decoding, which is able to disentangle and decode the interfering transmissions. Our evaluations on USRP and commodity devices reveal that Symphony achieves a concurrent wireless communication from BLE, ZigBee and LoRa commercial chips to a LoRaWAN base station over 500 meters, $16 \times$ range extension over native BLE/ZigBee.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.