Abstract

Multilayer ceramic capacitors (MLCCs) had become an important component of many electronic devices on account of its miniaturization, high capacitance and reliability. To satisfy the requirements of MLCCs, the temperature–insensitivity and dielectric properties of the dielectric ceramics were urgent to be enhanced. In our work, (1–x)K0.5Na0.5NbO3–xBi(Li0.5Nb0.5)O3 (abbreviated to KNN–xBLN) were successfully synthesized by traditional solid state reaction method. On the one hand, the doping BLN induced the diffused phase transition and broadened the dielectric anomaly peaks, which improved the temperature insensitivity of KNN-based ceramics. On the other hand, the nanosized grains and dense microscopy boosted the breakdown electric field. Ultimately, the KNN–0.175BLN samples presented the excellent dielectric properties with high dielectric constant (1735) and low dielectric loss (1.9%) at room temperature with a wide temperature stability range (–62 – 300 °C), which exhibited the wider temperature stability range than X9R specification. Meanwhile, the x = 0.175 samples also achieved a high recoverable energy storage density of 3.71 J/cm3 under the breakdown electric field of 360 kV/cm. The designed KNN–based dielectric materials were expected to be applicable to the energy storage capacitor with standed high operating temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.