Abstract

A field study was conducted to investigate the effect of Fe-based biochar application on the extractability and availability of Cd and As, as well as its impact on crop growth and yield under a two-years wheat-rice rotation system. The Fe-based biochar was applied to the soil at 1.5 and 3.0 t ha–1, manure compost was also applied as a comparison, as well as a non-treated control. The application of the Fe-based biochar significantly (p < 0.05) increased the crop yields for the rice season in the first year, but the both treatments had no significant effect on the crop yields in the others cultivation seasons, compared to the control. The concentrations of available Cd and As significantly (p < 0.05) decreased after either higher or lower dose of Fe-based biochar addition, especially with lower rate in the second year. In the second year, the soil extractable Cd and As reduced by 57% and 18%, respectively, in the wheat season and 63% and 14%, respectively, in the rice season, after the lower dose of Fe-based biochar was applied. The lower dose of the Fe-based biochar treatment showed higher efficiency for decreasing Cd and As availability in soil than the higher one, the control and manure compost treatment. Additionally, both the higher and lower doses of the Fe-based biochar treatments significantly decreased Cd and As uptake by wheat and rice plants. Overall, the Fe-based biochar showed effective immobilization at an application of 1.5 t ha–1, making the use of the Fe-based biochar feasible as an amendment for the safe use of agricultural land contaminated by Cd and As.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.