Abstract

Multi-way calibration based on second-order data constitutes a revolutionary milestone for analytical applications. However, most classical chemometric models assume that these data fulfil the property of low rank bilinearity, which cannot be accomplished by all instrumental methods. Indeed, various techniques are able to generate non-bilinear data, which are all potentially useful for the development of novel second-order calibration methodologies. However, the achievement of the second-order advantage in these cases may be severely limited, since methods for comprehensive modelling of non-bilinear second-order data remain only partially explored. In this research, the analytical performance of three well-known second-order models, namely non-bilinear rank annihilation (NBRA), unfolded partial least-squares with residual bilinearization (U-PLS-RBL) and multivariate curve resolution - alternating least-squares (MCR-ALS) is systematically assessed through sets of simulated and experimental non-bilinear second-order data, involving one analyte and one interferent. Although it is not possible to establish a single strategy to model any type of non-bilinear second-order data with the studied methods, each approach may lead to successful predictions under certain circumstances. It is shown that the prediction capacity is severely affected by data properties such as the level of instrumental noise, the rank of the response matrices and the signal selectivity pattern of the analyte.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.