Abstract

Using the aerobic granular sludge (AGS) to improve tetracycline (TET) removal in the treatment of mariculture wastewater was investigated in the present study. The AGS rapidly adapted to and was sustained in seawater matrices with a robust granule strength (k = 0.0014) and a more stable sludge yield than the activated sludge (AS) (0.14 vs 0.11 g-VSS/g-CODrem). The compact structure provided the AGS with an anoxic environment, which favored the growth of N (37.3 %) and P removal bacteria (30.4 %) and the expression of functional genes (nos, nor, and nar), resulting in more than 62 % TN and TP removals, respectively. Similar abundances of aromatic compound-degrading bacteria (∼34 %) in both reactors (AGS and AS) led to comparable TET biodegradation efficiencies (∼0.045 mg/g-VSS). The greater size and surface area of the AGS expanded the boundary layer diffusion region, leading to 16 % increases in the granule’s TET adsorption capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call