Abstract

The normal cardiac rhythm is the result of collective, synchronized action of a large number of cardiac oscillators which play a crucial role in the determination of the sinus rhythm. The physiological function of the cardiovascular system is under the control of the autonomic nervous system (ANS). The two limbs of the ANS, sympathetic and parasympathetic, are critical in determining the oscillations within the heart. The pumping effectiveness of the heart is controlled by the sympathetic and parasympathetic nerves, which abundantly supply the heart that act in opposing ways. However, the two divisions act together to regulate the activity of the internal organs as per the needs of the body at any particular time. The cardiac centers in the central nervous system exert an influence on the heart’s activity through sympathetic and parasympathetic nerves. This influence governs the rate of beat, the systolic contractile force and the velocity of atrioventricular conduction. The parasympathetic stimulation causes a decrease in heart rate whereas sympathetic stimulation increases it. The intrinsic cardiac nervous system is seen to play an active role in regulating cardiac function which consists of sympathetic and parasympathetic neurons and interconnecting local circuits. An appropriate mathematical model that describes the electrical activity and ion exchange in the sinoatrial node (SAN) is considered and the dynamical equations describing the behaviour of the chosen model are solved with the corresponding source code developed and implemented using Matlab.An Integrate and Fire Neuron (IFN) model is developed that mimics the role of ANS which acts as an external influence to the preferred SAN cell to in order to coax synchronization between the coupled cell pair. The influence of the suitable neuron model in effecting synchrony between the coupled SAN cell pair is demonstrated with the aid of simulation studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.