Abstract

Thrombosis and bleeding are common complications of blood-contacting medical device therapies. In this work, an endothelium membrane mimetic coating (PMPCC/Hep) has been created to address these challenges. The coating is fabricated by multi-point anchoring of a phosphorylcholine copolymer (poly-MPC-co-MSA, PMPCC) with carboxylic side chains and end-group grafting of unfractionated heparin (Hep) onto polydopamine precoated blood-contacting material surfaces. The PMPCC coating forms an ultrathin cell outer membrane mimetic layer to resist protein adsorption and platelet adhesion. The tiny defects/pores of the PMPCC layer provide entrances for heparin end-group to be inserted and grafted onto the sub-layer amino groups. The combination of the PMPCC cell membrane mimetic anti-fouling nature with the grafted heparin bioactivity further enhances the anticoagulation performance of the formed endothelium membrane mimetic PMPCC/Hep coating. Compared to conventional Hep coating, the PMPCC/Hep coating further decreases protein adsorption and platelet adhesion by 50 % and 90 %, respectively. More significantly, the PMPCC/Hep coating shows a superior anticoagulation activity, even significantly higher than that of an end-point-attached heparin coating. Furthermore, the blood coagulation function is well preserved in the PMPCC/Hep coating anticoagulation strategy. All the results support that the PMPCC/Hep coating strategy has great potential in developing more efficient and safer blood-contacting medical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.