Abstract

As one of the most fascinating phenomena, structural whiteness in natural organisms serves important functions in thermoregulation and mating. However, the architectures that cause visible broadband reflection are often in quasiordered distributions, which hinders systematic research on their color formation mechanisms. Here, through numerical analysis, the architectures in Morpho theseus scales are shown to be distributed in various tubular morphologies between tubular and gyroid structures. Then, the mechanism of structural white is discussed using the numerical model built with the combination of a periodic numerical framework and random elements. Thermodynamic experiments indicate that the white scales can efficiently help reduce the temperature of butterfly wings under a direct light beam. Our work provides a concise method for analyzing quasiordered structures. The methodology developed by this numerical model can facilitate a deep understanding of the performance improvement facilitated by these structural characteristics. Corresponding solutions can guide the design of nano-optical materials to achieve an efficient cooling, camouflage, and photothermal conversion system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.