Abstract

In order to sustainably manage wastewater treatment plants and the environment, enhanced biological phosphorus (P) removal (EBPR) was proposed to achieve P recovery through extracting P-rich liquid (i.e., Phostrip) from the bottom of aerobic granular sludge (AGS)-based sequencing batch reactors (SBRs) under no mixing during the anaerobic phase. Results showed both tested bacterial AGS (BAGS) and algal-bacterial AGS (A-BAGS) systems stably produced low effluent P (<0.05 mg-P/L) with little impact on their organics and NH4+-N removals (>99%). The collected P-rich liquids (55–83 mg-P/L) from both systems showed great potential for P recovery of about 83.85 ± 0.57 % (BAGS) or 83.99 ± 0.77% (A-BAGS), which were contributed by the influent P (>95%) and P reserves in granules based on P balance analysis. This study suggests that the AGS-based SBRs coupling the Phostrip holds great potentials for P recovery profit and further reduction in energy consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call