Abstract

Aqueous Zn ion batteries (AZIBs) are considered to be highly promising rechargeable secondary batteries. However, the growth of zinc dendrites and irreversible side reactions hinder its further application. In this paper, an artificial interfacial protective layer of phenol–formaldehyde resin (PF) was constructed to achieve high-performance zinc anode. There is a strong interaction between hydroxyl groups in PF and Zn ions. This interaction modulates the solvation sheath of Zn ions and promotes the desolvation of [Zn(H2O)6]2+, which reduces the side reactions induced by reactive H2O. Furthermore, the pore structure of PF provides ion-confinement effect to regulate the Zn ions flux, thus reducing the growth of dendrites caused by inhomogeneous deposition. Thus, the PF coating has the dual effect of fast desolvation and ion confinement, which is beneficial to the uniform Zn ions deposition and achieves highly stable zinc anodes. Consequently, the Zn@PF||MnO2 full cell can be stably cycled for 1500 cycles at 1.5 A/g and the capacity retention remains 82.4 %. This method provides a convenient and practical approach to tackle the problems of zinc anodes, and establishes the foundation for their further application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call