Abstract

This paper describes the new concept of the mainstream partial nitritation (PN)-anaerobic ammonium oxidation (ANAMMOX) combined with a high-temperature shock strategy for the selective recovery of ammonia-oxidizing bacteria (AOB) activity. In the preliminary test, the temperature shock condition for PN was optimized (60 °C and > 20 min). Based on this, the implementation strategy in a continuous stirred tank reactor (CSTR) system was studied further, and the polyvinyl alcohol (PVA)/sodium alginate carrier exposure ratio (ER) and dissolved oxygen (DO) concentration were considered as primary variables. The AOB activity was recovered selectively when the ER of the carrier ranged from 20 to 40%, and the DO was higher than 2.3 mg O2/L. This was not the case for nitrite-oxidizing bacteria (NOB) (AOB: 1.17±0.1 gNH4+-N/LCarrier/d, NOB: 0.34±0.1 gNO3−-N/LCarrier/d). As a result, the activity of AOB was recovered selectively with a decrease in Nitrospira spp., which was verified by kinetic and microbial analyses for the AOB (KS, DO = 3.89 mgO2/L) and NOB (KS, DO = 1.14 mgO2/L). Eventually, the mainstream PN-ANAMMOX was achieved with a nitrogen removal efficiency of 81.5±3.3% for 95 days. The findings provide insight to establishing a stable mainstream PN-ANAMMOX process using a high-temperature shock strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.