Abstract

Unleashing the potential of lithium-metal anodes in practical applications is hindered by the inherent stress-related challenges arising from their limitless volume expansion, leading to mechanical failures such as electrode cracking, solid electrolyte interphase damage, and dendritic growth.Despite the various protective strategies to "combat" stress in lithium-metal anodes, they fail to address the intrinsic issue fundamentally. Here, a unique strategy is proposed that leverages the stress generated during the battery cycling via the piezoelectric effect, transforming to the adaptive built-in electric field to accelerate lithium-ion migration, homogenize the lithium deposition, and alleviate the stress concentration. The mechanism of the piezoelectric effect in modulating electro-chemomechanical field evolution is further validated and decoupled through finite element method simulations. Inspired by this strategy, a high sensitivity, fast responsive, and strength adaptability polymer piezoelectric is used to demonstrate the feasibility and the corresponding protected lithium-metal anode shows cycling stability over 6000h under a current density of 10mA cm-2 and extending life in a variety of coin and pouch cell systems. This work effectively tackles the stress-related issues and decoupling the electro-chemomechanical field evolution also contributes to developing more stable lithium anodes for future research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call