Abstract

Stochastic simulation techniques employed for the analysis of portfolios of insurance/reinsurance risk, often referred to as `Aggregate Risk Analysis', can benefit from exploiting state-of-the-art high-performance computing platforms. In this paper, parallel methods to speed-up aggregate risk analysis for supporting real-time pricing are explored. An algorithm for analysing aggregate risk is proposed and implemented for multi-core CPUs and for many-core GPUs. Experimental studies indicate that GPUs offer a feasible alternative solution over traditional high-performance computing systems. A simulation of 1,000,000 trials with 1,000 catastrophic events per trial on a typical exposure set and contract structure is performed in less than 5 seconds on a multiple GPU platform. The key result is that the multiple GPU implementation can be used in real-time pricing scenarios as it is approximately 77x times faster than the sequential counterpart implemented on a CPU.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.