Abstract

Super-resolution optical microscopy enables optical imaging of cells, molecules and other biological structures beyond the diffraction limit. However, no similar method exists to super-resolve specific cells with ultrasound. Here we introduce Deactivation Super Resolution (DSR), an ultrasound imaging method that uses the acoustic deactivation of genetically encodable contrast agents to super-resolve individual cells with ultrasound as they navigate through structures that cannot be resolved by conventional imaging methods. DSR takes advantage of gas vesicles, which are air-filled sub-micron protein particles that can be expressed in genetically engineered cells to produce ultrasound contrast. Our experimental results show that DSR can distinguish sub-wavelength microstructures that standard B-mode ultrasound images fail to resolve by super- localizing individual mammalian cells. This study provides a proof of concept for the potential of DSR to serve as a super- resolution ultrasound technique for individual cell localization, opening new horizons in the field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.