Abstract

In this work, the neglected role of the dielectric breakdown strength (BDS) in piezoelectricity of bismuth layer-structured ferroelectrics (BLSFs) is revealed, enhanced initial polarization and BDS work together to improve the piezoelectricity of CaBi4Ti4O15 (CBT) ceramics via Li/Bi co-substitution. The experimental work, first-principles calculations and finite element simulation are carried out to investigate the effect of Li/Bi co-substitution in depth. The stronger spontaneous polarization (Ps) from the lattice distortion and the more favorable domain switching from the improved grain growth both contribute to an enhanced initial polarization. Besides, the changed grain-scale microstructure improves the hardness and inhibits the local discharge, the higher resistivity related to strong defect dipoles suppresses the heat generation during the poling process, all resulting in an increase of BDS by about 100%, and allowing more domains to align. This work demonstrates an effective strategy to develop BLSFs with enhanced piezoelectricity for high temperature piezoelectric applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call