Abstract

Triboelectric-electromagnetic hybrid nanogenerator (TEHG) has emerged as a promising technology for distributed energy harvesting. However, currently reported hybrid generators are straightforward combinations of two functional components. Moreover, inevitable heat from friction intensifies material abrasion and degrades the performance of polymer-based triboelectric nanogenerators (TENGs). Here, a self-reinforcing TEHG (SR-TEHG) that harnesses the magnetocaloric and magnetization effects of gadolinium (Gd), is proposed. The synergy between TENG and electromagnetic generator (EMG) renders them an indivisible unit. Leveraging Gd's magnetocaloric effect, an efficient heat transfer mechanism is constructed to cool the tribolayer and strengthen the device's electrical stability. After 80 h of continuous operation, the optimized TENG occupies a charge decay rate of only 0.32% per hour, significantly outperforming most existing TENGs. Additionally, Gd's magnetization effect boosts the power of EMG by ≈80.84%. This work provides a universal solution in hybrid generators where internal components reinforce each other, achieving a synergistic effect of 1 + 1 > 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.