Abstract

This paper presents a scalable method for parallel symbolic reachability analysis on a distributed-memory environment of workstations. Our method makes use of an adaptive partitioning algorithm which achieves high reduction of space requirements. The memory balance is maintained by dynamically repartitioning the state space throughout the computation. A compact BDD representation allows coordination by shipping BDDs from one machine to another, where different variable orders are allowed. The algorithm uses a distributed termination protocol with none of the memory modules preserving a complete image of the set of reachable states. No external storage is used on the disk; rather, we make use of the network which is much faster.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call