Abstract

The effective inhibition of nitrite-oxidizing bacteria (NOB) is widely acknowledged to be a critical issue for mainstream short-cut biological nitrogen removal. This study demonstrated a stable mainstream nitritation by implementing light irradiation. A sequencing batch reactor with ultraviolet-A (UVA) irradiation was operated for 250 days, and a high nitrite accumulation ratio was achieved and stabilized at about 90 %. UVA irradiation also positively impacts denitrification activity, with total nitrogen removal up to 63 %. Microbial community analysis confirmed that the UVA effectively and stably decreased the abundance of Nitrospira (the only detected NOB) from 6.0 % to 0.1 %, while it showed no effect on Nitrosomonas. The enriched genus Rhodocyclaceae was the major contributor to the increase in denitrification activity in the light-induced nitritation system. The proposed UVA irradiation strategy has the potential to be integrated with an anoxic/aerobic (A/O) or integrated fixed-film activated sludge (IFAS) process for achieving mainstream short-cut biological nitrogen removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call