Abstract
Strategies for developing purely organic materials exhibiting both high efficiency and persistent room-temperature phosphorescence (RTP) have remained ambiguous and challenging. Herein, we propose that introducing an intermediate charge transfer (CT) state into the donor-acceptor binary molecular system holds promise for accomplishing this goal. Guest materials showing gradient ionization potentials were selected to fine-tune the intermolecularly formed CT state when doped into the same host material with a large electron affiliation potential. Such a CT intermediate state accelerates the population of the triplet exciton to benefit phosphorescent emission and decreases the phosphorescence lifetime via quenching the long-lived triplet excitons. As a result, a "trade-off" between a long phosphorescence lifetime (595 ms) and a high phosphorescent quantum yield (27.5%) can be obtained by tuning the host-guest energy gap offset. This finding highlights the key role of CT in RTP emission and provides new guidance for developing novel RTP systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.