Abstract
Photon upconversion luminescence at the molecule scale is a rarely observed phenomenon despite possessing colossal potential for basic research and reality applications. Here we show that the eight-coordinate erbium molecular complex composed of Er3+ ion, dibenzoylmethane, and 2,2'-bipyridine exhibits upconversion emission. Under direct excitation at the absorption band of Er3+ ion at 980 nm, the complex shows upconverted green emissions of Er3+ ion at 525 and 545 nm at room temperature. Noticeably, upon the introduction of fluoride ions into this complex, an additional upconverted red emission at 667 nm appears as well, and the luminescence intensities of both the green and red emissions increase by a factor of 13 at most. This study not only provides a strategy to adjust the green and red emissions in mononuclear erbium complexes but also broadens the horizons of designing lanthanide-based molecular upconversion systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.