Abstract

AbstractHerein, we develop an approach to achieve performance‐advantaged polydicyclopentadiene (PDCPD) via sequential ring‐opening metathesis polymerization (ROMP) and radical reactions. We mix dicyclopentadiene (DCPD), Grubbs' catalyst and radical initiator in one pot, and then polymerize first at low temperature by ROMP and initiate radical reactions at elevated temperature. As a result of our strategy, the crosslink density of PDCPD increases, leading to outstanding performance. For instance, the glass transition temperature Tg of ROMP‐prepared PDCPD is ca 155–175 °C, whereas the Tg of PDCPD prepared by this strategy can be increased to 191 °C and can be further enhanced to 216 °C after polymerization at 250 °C. We believe this can help researchers design and synthesize high performance ROMP‐derived polymers and apply PDCPD in harsh conditions. © 2024 Society of Industrial Chemistry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call