Abstract

Coupling with the nitrate electroreduction reaction (NitRR), the electrosynthesis of cyclohexanone oxime (CHO, the vital feedstock in the nylon-6 industry) from cyclohexanone provides a promising alternative to the traditional energy consumption process. However, it still suffers from low efficiency because selective production of *NH2OH intermediate from NitRR under large current densities is challenging. We here report a Cu1MoOx/nitrogen-doped carbon (NC) electrocatalyst with high-density Cu-Mo dual sites for NitRR to selectively produce and stabilize *NH2OH, with the subsequent cyclohexanone oximation achieving the highest CHO Faradaic efficiency of 94.5% and a yield rate of 3.0 mol g-1 h-1 at an industrially relevant current density of 0.5 A cm-2. Furthermore, in situ characterizations evidenced that the Cu-Mo dual sites in Cu1MoOx/NC effectively inhibited hydrodeoxygenation of hydroxyl-containing intermediates of NitRR, selectively producing *NH2OH and thus achieving cyclohexanone oximation with high efficiency. This work provides a high-performance catalyst for CHO electrosynthesis from nitrogenous waste, showing promising application potential in industrial production of CHO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.