Abstract

Distributed in-memory key-value stores (KVSs) have become a critical data-serving layer in cloud computing and big data infrastructure. Unfortunately, KVSs have demonstrated a gap between achieved and available performance, QoS, and energy efficiency on commodity platforms. Two research thrusts have focused on improving key-value performance: hardware-centric research has started to explore specialized platforms for KVSs, and software-centric research revisited the KVS application to address fundamental software bottlenecks. Unlike prior research focusing on hardware or software in isolation, the authors aimed to full-stack (software through hardware) architect high-performance and efficient KVS platforms. Their full-system characterization identifies the critical hardware/software ingredients for high-performance KVS systems and suggests optimizations to achieve record-setting performance and energy efficiency: 120~167 million requests per second (RPS) on a single commodity server. They propose a future many-core platform and via detailed simulations demonstrate the capability of achieving a billion RPS with a single server platform.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call