Abstract

An innovative partial nitrification and short-cut sulfur autotrophic denitrification (PN-SSAD, NH4+-N → NO2−-N → N2) coupled system in a single-stage SBR was proposed to treat low C/N wastewater with low material and energy consumption. Nearly 50 % alkalinity consumption and 40 % sulfate production were reduced in S0-SSAD compared with S0-SAD, whereas the autotrophic denitrification rate was increased by 65 %. In S0-PN-SSAD, the TN removal efficiency reached almost 99 % without additional organic carbon. Furthermore, pyrite (FeS2) rather than S0 served as the electron donor to optimize the PN-SSAD process. The practical sulfate production in S0-PN-SSAD and FeS2-PN-SSAD were about 38 % and 52 % lower than complete nitrification and sulfur autotrophic denitrification (CN-SAD), respectively. Thiobacillus was the major autotrophic denitrification bacteria in S0-PN-SSAD (34.47 %) and FeS2-PN-SSAD (14.88 %). Nitrosomonas and Thiobacillus played a synergistic effect in the coupled system. FeS2-PN-SSAD is expected as an alternative technology for nitrification and heterotrophic denitrification (HD) in treating low C/N wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call