Abstract

Four platinum(II) complexes Pt-1, Pt-2, Pt-3, and Pt-4 with the isomeric donor-acceptor (D-A) conjugated ligand framework are designed and prepared, and their thermal, photophysical, and electrochemical characteristics investigated. Crystal structures for Pt-1 and Pt-4 are determined with single-crystal X-ray diffraction analysis, showing distorted and nonplanar geometry. Complex Pt-4 exhibits much greater distortion, attributed to the steric interactions between benzothiadiazole and naphthalene. Remarkably different photophysical, electrochemical, and electroluminescent properties are found for these platinum(II) complexes. Photoluminescence wavelengths of these complexes range from 590 to 800 nm with bandgaps of 1.7-2.0 eV. Coordination with [1,2,5]thiadiazolo[3,4- c]pyridine and triphenylamine can enhance D-A interactions, reducing the bandgap and producing near-infrared emission for Pt-3. Organic light-emitting devices (OLEDs) display electroluminescence with emission peaks at 626, 645, 826, and 571 nm, with maximum external quantum efficiencies of 0.13%, 0.04%, 0.49%, and 0.22% for Pt-1, Pt-2, Pt-3, and Pt-4 doped OLEDs, respectively. Thus, adjusting the coordination position with the isomeric conjugation framework ligand is an appropriate strategy to tune the light-emitting properties of platinum complexes in OLEDs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.