Abstract

Mitigating life-cycle greenhouse gas emissions of plastics is perceived as energy intensive and costly. We developed a bottom-up model that represents the life cycle of 90% of global plastics to examine pathways to net-zero emission plastics. Our results show that net-zero emission plastics can be achieved by combining biomass and carbon dioxide (CO2) utilization with an effective recycling rate of 70% while saving 34 to 53% of energy. Operational costs for net-zero emission plastics are in the same range as those for linear fossil-based production with carbon capture and storage and could even be substantially reduced. Realizing the full cost-saving potential of 288 billion US dollars requires low-cost supply of biomass and CO2, high-cost supply of oil, and incentivizing large-scale recycling and lowering investment barriers for all technologies that use renewable carbon feedstock.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call