Abstract

Developing singular semiconductor photocatalyst for overall water splitting (OWS) is of significance for commercialization of solar-fuel-production technologies but is critically challenging due to the rigorous requirements for band structure and charge-utilization capability, especially under long-wavelength light. Herein, we report the development of a highly crystalline C3N4 photocatalyst for efficient OWS under near-infrared (NIR) irradiation (λ >700 nm). An effective semi-molten-salt approach with solid/liquid medium was used to treat the oxygen-containing precursor and to minimize undesired nitrogen defects that the traditional strategies always suffer from. The fully condensed structure with high crystallinity was therefore achieved for oxygen-incorporated C3N4 with NIR absorption. Benefiting from simultaneous realization of high crystallinity for efficient charge separation/migration and narrowed bandgap for broad light harvesting, synthesized singular C3N4 presented unprecedented OWS performances with hydrogen/oxygen evolution amount of 1.2/0.6 μmol over 30 h under NIR irradiation. This work provides a conceptual strategy for the design of advanced OWS-active photocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.