Abstract

AbstractMXene possesses great potential in enriching the functionalities of hydrogels due to its unique metallic conductivity, high aspect ratio, near-infrared light (NIR light) responsiveness, and wide tunability, however, the poor compatibility of MXene with hydrogels limits further applications. In this work, we report a uniformly dispersed MXene-functionalized poly-N-isopropylacrylamide (PNIPAM)/poly-2-acrylamido-2-methyl-1-propanesulfonic acid (PAMPS) double network hydrogel (M—DN hydrogel) that can achieve switchable friction regulation by using the NIR light. The dispersity of MXene in hydrogels was significantly improved by incorporating the chitosan (CS) polymer. This M—DN hydrogel showed much low coefficient of friction (COF) at 25 °C due to the presence of hydration layer on hydrogel surface. After illuminating with the NIR light, M—DN hydrogel with good photothermal effect rapidly raised the temperature to above the lower critical solution temperature (LCST), which led to an obvious increase of surface COF owing to the destruction of the hydration layer. In addition, M—DN friction control hydrogel showed good recyclability and controllability by tuning “on-off” of the NIR light. This work highlights the construction of functional MXene hydrogels for intelligent lubrication, which provides insight for interface sensing, controlled transmission, and flexible robotic arms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call