Abstract

This study demonstrated the presence of a critical equivalent ratio of the competing anion (i.e., sulfate and bicarbonate) to chloride ion in recycled brine to achieve highly-selective nitrate removal from nitrate-rich groundwater in the standard-anion exchange resin (AER) (i.e., with trimethylamine functional groups) column process. With increasing bicarbonate (or sulfate):chloride equivalent ratio in brine used to circularly activate/regenerate the standard-AER column, considerable bicarbonate (sulfate) removal and dumping were observed. The critical bicarbonate (sulfate):chloride equivalent ratio of 2:5 (8:1) in brine effectively achieved zero net bicarbonate (sulfate) removal (<5%) from feedwater during long-term exhaustion–regeneration cyclic operation. The feed rate (6–18 BV/h) played a key role in determining the critical sulfate:chloride equivalent ratio in brine, while the feed sulfate concentration (145–345 mg/L) slightly changed the critical sulfate:chloride equivalent ratio. The use of optimized ternary brine (with a sulfate:chloride:bicarbonate equivalent ratio of 42:5:2) stably achieved long-term highly-selective nitrate removal from groundwater in the standard-AER column process with brine electrochemical treatment. The possible mechanism for nitrate selectivity included the modification of the sulfate: and bicarbonate:chloride equivalent ratios in the standard-AER column by the optimized brine in circular activation/regeneration mode; this changed the column elution and breakthrough curves, inhibited the competition of sulfate and bicarbonate for ion exchange sites during exhaustion according to the separation factor, and finally achieved selective nitrate removal from feedwater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.