Abstract

ABSTRACT Accelerator mass spectrometry (AMS) radiocarbon (14C) dating is central to the development of robust chronologies in archaeological and paleoenvironmental contexts spanning the last 50,000 years. For dates to be accurate, samples must be free of exogenous carbon contamination. At the Oxford Radiocarbon Accelerator Unit (ORAU), considerable advancements in the dating of bone collagen have been made through the development of a high performance liquid chromatography (HPLC) method for the dating of the amino acid hydroxyproline, which can mitigate the effects of carbon contamination. However, recent changes in ligand manufacturing methods for the mixed-mode column used in the ORAU protocol (Primesep A, SIELC Technologies; IL, USA) have resulted in unacceptably high analytical backgrounds. Prior to the manufacturing change, backgrounds of > 50k BP were achievable. Since the manufacturing change, a mean background of 32.5k BP has been measured. Due to column bleed, the Primesep A is therefore no longer suitable for 14C measurement of hydroxyproline from older material. Here, we present background data and the chromatography conditions used to isolate hydroxyproline using an alternative column, a preparative-scale Newcrom AH, which shows promising potential as an alternative for the routine isolation and AMS dating of hydroxyproline—especially approaching the age and mass limits of the method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call