Abstract

AbstractThe development of high‐performance anode materials for potassium‐based energy storage devices with long‐term cyclability requires combined innovations from rational material design to electrolyte optimization. A three‐dimensional K+‐pre‐intercalated Ti3C2Tx MXene with enlarged interlayer distance was constructed for efficient electrochemical potassium‐ion storage. We found that the optimized solvation structure of the concentrated ether‐based electrolyte leads to the formation of a thin and inorganic‐rich solid electrolyte interphase (SEI) on the K+‐pre‐intercalated Ti3C2Tx electrode, which is beneficial for interfacial stability and reaction kinetics. As a proof of concept, 3D K+‐Ti3C2Tx//activated carbon (AC) potassium‐ion hybrid capacitors (PIHCs) were assembled, which exhibited promising electrochemical performances. These results highlight the significant roles of both rational structure design and electrolyte optimization for highly reactive MXene‐based anode materials in energy storage devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.