Abstract
AbstractGeTe alloys have attracted wide attention due to their high conversion efficiency. However, pristine GeTe possesses intrinsically massive Ge vacancies, leading to a very high hole concentration (1021 cm−3). Herein, a decreased carrier concentration is realized by alloying NaSbTe2 in GeTe due to the increased formation energy of Ge vacancies. This alloying also lowers energy separation between the valence bands in the rhombohedral GeTe and induces two extra valence band pockets around the Fermi surface along Γ‐L and L‐W in the cubic GeTe, all of which contributes to the higher power factors over a wide temperature range. Combined with the low lattice thermal conductivities due to plenty of dislocations and strains as a result of the crystallographic disorder of Na, Ge, and Sb, a maximum zT ≈ 2.35 at 773 K and a zTave of 1.33 from 300 to 773 K are achieved in (GeTe)90(NaSbTe2)10.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.