Abstract
Thermoelectric power generation technology has emerged as a clean "heat engine" that can convert heat to electricity. Recently, the discovery of an ultrahigh thermoelectric figure of merit in SnSe crystals has drawn a great deal of attention. In view of their facile processing and scale-up applications, polycrystalline SnSe materials with ZT values comparable to those of the SnSe crystals are greatly desired. Here we achieve a record high ZT value ∼2.1 at 873 K in polycrystalline Sn1-xSe with Sn vacancies. We demonstrate that the carrier concentration increases by artificially introducing Sn vacancies, contributing significantly to the enhancements of electrical conductivity and thermoelectric power factor. The detailed analysis of the data in the light of first-principles calculations results indicates that the increased carrier concentration can be attributed to the Sn-vacancy-induced Fermi level downshift and the interplay between the vacancy states and valence bands. Furthermore, vacancies break translation symmetry and thus enhance phonon scattering, leading to extralow thermal conductivity. Such high ZT value ∼2.1 is achieved by synergistically optimizing both electrical- and thermal-transport properties of polycrystalline SnSe. The vast increase in ZT for polycrystalline SnSe may accelerate practical applications of this material in highly effective solid-state thermoelectric devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.