Abstract

We report on thermal conductivity measurements of aluminum nitride (AlN) films using the fast pulsed photo-thermal technique. The films were deposited by high-power impulse magnetron sputtering with different thicknesses ranging from 1000 to 8000 nm on (1 0 0) oriented silicon substrates. The films were characterized by x-ray diffraction (XRD), Raman spectroscopy, profilometry, scanning electron microscopy and atomic force microscopy. The XRD measurements showed that AlN films were textured along the (0 0 2) direction. Moreover, x-ray rocking curve measurements indicated that the crystalline quality of AlN was improved with the increase in film thickness. The thermal conductivities of the samples were found to rapidly increase when the film thickness increased up to 3300 nm and then showed a tendency to remain constant. A thermal boundary resistance as low as 8 × 10−9 W−1 K m2 and a thermal conductivity as high as 250 ± 50 W K−1 m−1 were obtained for the AlN films, at room temperature. This high thermal conductivity value is close to that of an AlN single crystal and highlights the potential of these films as a dielectric material for thermal management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call