Abstract

Thermal link is an important carrier used to transfer the cooling capacity and suppress the temperature fluctuation in cryostat. To balance these two points, it is usually necessary to find the optimum thermal link parameters. This paper establishes a model for the cryocooler cold head-thermal link-second flange based on a cryostat. Utilizing the response surface method, response equations correlating thermal link parameters with the temperature and its fluctuations of the second stage flange are developed at the lowest temperature of cryocooler. Through dual-objective optimization of cooling capacity transfer and temperature fluctuations at the second flange, the optimal thermal link parameters are determined and experimentally validated based on predicted results. The experimental and predicted values show good agreement with an error of 2 %. The optimized thermal link led a minor temperature increase and a significant temperature fluctuation reduction, decreasing from 230mK at the cold head to 2.900mK at the second flange, achieving a 98.74 % reduction. Furthermore, compared with non-optimization structure, the optimization one has further lowered the temperature fluctuation at the second flange from 4.000mK to 2.900mK with 27.5 % improvement. These results show that the present methods are reliable and useful to help to realize highly stable low-temperature environment in cryostat.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.