Abstract
Compliant constant-torque mechanisms (CCTMs) maintain constant-torque without the need for complex closed-loop feedback systems, broadening their applications in rehabilitation devices, surgical tools, and cooperative robotic arms. However, CCTMs present considerable design challenges due to the pronounced nonlinearities that arise due to large deflection and multi-axial loadings. Traditional CCTM design strategies focus on managing post-buckling phenomena, often leading to increased stresses and an imbalance in positive and negative stiffness, compromising torque consistency and stroke capacity. This study introduces a novel CCTM that effectively decouples the multi-axial loadings and releases axial forces, isolating beam bending forces. This decoupling is achieved by incorporating a parallel-guided compliant mechanism at the fixed end of the beam, which reduces stress and enhances torque stability throughout the operational range. Through swarm optimization of geometric design parameters using the chained beam constraint model, this research has produced a CCTM capable of maintaining torque fluctuations below 0.39% over a rotational range of 18° to 68°. Experimental validations confirm the design’s superiority in providing an extended constant torque stroke and improved consistency, distinguishing it from conventional straight-beam CCTMs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.