Abstract

Making lightweight porous ceramics with excellent permeability applied for transpiration cooling is still challenging. Herein, an ingenious fabrication method is proposed to successfully prepare Cf/SiC(rGO)px/SiC porous ceramics possessing low density, high permeability and satisfactory mechanical properties. The introduction of carbon fibers for constructing channels and SiC(rGO)p with three-dimensional (3D) honeycomb cellular net-like structure, could effectively decrease density and improve porosity. Meanwhile, self-supporting porous skeleton, high open porosity and uniform pores distribution contribute to brilliant permeability of the products. Good interfacial compatibility among SiC(rGO)p, carbon fibers and β-SiC/SiOxCy/Cfree matrix, as well as toughening effects of carbon fibers are beneficial for enhancing fracture toughness and compressive strength. Particularly, Cf/SiC(rGO)p0.6/SiC porous ceramics exhibit low density (1.12 g·cm−3), low linear shrinkage (3.22%), especially high permeability (1.36 ×10−7 mm2), satisfactory fracture toughness (1.77 MPa·m1/2), excellent hardness (3.88 GPa) and compressive strength (6.41 MPa), focusing on potential applications as coolant medium in transpiration cooling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call