Abstract

Two new iridium(III) complexes were synthesized by introducing two trifluoromethyl groups into an ancillary ligand to develop pure-red emitters for organic light-emitting diodes (OLEDs). The electron-donating ability of the ancillary ligands is suppressed, owing to the electron-withdrawing nature of trifluoromethyl groups, which can reduce the HOMO energy levels compared with those of compounds without trifluoromethyl groups. However, the introduction of trifluoromethyl groups into the ancillary ligand has little impact on the LUMO energy levels. Therefore, a well-tuned, pure-red, excited-state energy was achieved by regulating the relative energy level between the HOMO and LUMO. OLEDs with these complexes as emitters showed high external quantum efficiencies (EQEs) of 26 % and realized high EQEs of about 25 % and fairly low driving voltages of 3.3-3.6 V for practical luminance of 1000 cd m-2 , as well as excellent Commission Internationale de L'Eclairage (CIE) coordinates of (0.66, 0.33) and (0.67, 0.33); thus, this demonstrates the successful molecular design strategy by modifying the electron-donating ability of ancillary ligand.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call