Abstract

Trehalose is considered as a biocompatible cryoprotectant for solvent-free cryopreservation of cells, but the difficulty of the current trehalose delivery platforms to human red blood cells (hRBCs) limits its wide applications. Due to cell injuries caused by incubation at 37°C and low intracellular loading efficiency, development of novel methods to facilitate trehalose entry in hRBCs is essential. Herein, a reversible membrane perturbation and synergistic membrane stabilization system based on maltopyranosides and macromolecular protectants was constructed, demonstrating the ability of efficient trehalose loading in hRBCs at 4 °C. Results of confocal laser scanning microscopy exhibited that the intracellular loading with the assistance of maltopyranosides was a reversible process, while the membrane protective effect of macromolecular protectants on trehalose loading in hRBCs was necessary. It was suggested that introduction of 30mM poly(vinyl pyrrolidone) 8000 combined with 1mM dodecyl-β-D-maltopyranoside and 0.8M trehalose could increase the intracellular trehalose to 84.0±11.3mM in hRBCs, whereas poly(ethylene glycol), dextran, human serum albumin or hydroxyethyl starch had a weak effect. All the macromolecular protectants could promote the cryosurvival of hRBCs, exhibiting membrane stabilization, and incubation and followed by cryopreservation did not change the basic functions and normal morphology of hRBCs substantially. This study provided an alternative strategy for glycerol-free cryopreservation of cells and the delivery of membrane-impermeable cargos.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call