Abstract

Ceramic capacitors have great potential for application in power systems due to their fantastic energy storage performance (ESP) and wide operating temperature range. In this study, the (1 - x)Bi0.5Na0.47Li0.03Sn0.01Ti0.99O3-xKNbO3 (BNLST-xKN) energy storage ceramics were synthesized through the solid-phase reaction method. The addition of KN disrupts the long-range ferroelectric order of the BNLST ceramic, inducing the emergence of polar nanoregions (PNRs), which enhances the ESP of the ceramics. The BNLST-0.2KN ceramic demonstrates a high recovered energy density (Wrec ∼ 3.66 J/cm3) and efficiency (η ∼ 85.8%) under a low electric field of 210 kV/cm. Meantime, it exhibits a large current density (CD ∼ 831.74 A/cm2), high power density (PD ∼ 78.86 MW/cm3), and fast discharge rate (t0.9 ∼ 0.1 μs), along with good temperature stability and excellent fatigue stability. These properties make the BNLST-0.2KN ceramic a promising candidate for energy storage applications in low electric fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call