Abstract

In this work, we report a high energy density supercapattery device were employing hydrothermally synthesized two-dimensional CuFe2O4 microsheets as cathode and synthesized redox-active Bi2O3 microsphere as the anode. The charge storage characteristics of the electrode materials were detailed studied. Herein, the 2D-CuFe2O4 microsheet-based positive electrode showed an enhanced areal capacitance and cyclic stability of 1279 mF cm−2 and 98% after 5000 GCD cycles, respectively. Moreover, Bi2O3 microspheres electrode material delivered a favourable capacitance of 1368.25 mF cm−2 and noticeable cyclic stability of 81% even after 3000 GCD counts. Both the positive and negative electrodes showed excellent electrochemical performance owing to their vast electrochemical active sites, which induce fast electron/ion transportation. Furthermore, a supercapattery device was assembled employing CuFe2O4/Ni-foam as cathode and Bi2O3/Ni-foam as anode for evaluating its real-time performance. This supercapattery device delivers a high energy density and power density of 67.55 µ Wh cm−2 and 3200 µ W cm−2, respectively, in the optimal 1.6 V cell voltage. Moreover, the device showed a good cycling stability value of 87.4% with noticeable coulombic efficiency of 99.2% with the 10,000 cycles. These electrochemical results suggest that the assembled device was esteemed the highly beneficial energy storage system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call