Abstract

The heavy by-products generated on Zn anode surface decrease the active surface of Zn anodes and thus induce uneven Zn deposition, seriously reducing the service life of aqueous Zn-ion batteries (AZIBs). Herein, we propose an elimination strategy enabled by the coordination chemistry to dissolve the main by-products (Zn4SO4(OH)6·xH2O). Urea as a proof-of-concept has been applied as the reactivator in the electrolyte to catalytically produce highly active NH3 on the surface of the by-products. Then the NH3 can powerfully coordinate with the Zn2+ ion in the by-products to form the soluble complex [Zn(NH3)4]2+. Consequently, the proposed electrolyte can not only lead to the timely decomposition of the by-products to prevent the Zn anode from inactivation during cycling, but also repair the waste Zn anodes for reutilization. The action mechanism has been systematically demonstrated via theoretical simulation and experimental study. As a result, the high durability with ultrahigh cumulative capacity of 10,600 mAh cm−2 for the Zn||Zn symmetric cell has been achieved at 40 mA cm−2. Particularly, the dead Zn||Zn symmetric cells and Zn||LiFePO4 full cells have been successfully reactivated. This study lights a new route to extend the cell lifespan and reuse waste Zn-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.