Abstract

Sintering is one of the critical factors leading to thermal and mechanical degradation of plasma-sprayed thermal barrier coatings (TBCs) in service under high temperature. The sintering resistance of the coating is expected to be improved through pore structure design. In this study, through a strategically improved powder feeding process, 8YSZ powders with fine-sized and coarse-sized pores were injected from the tail of plasma flame during plasma spraying to design porous coatings containing two differently flattened particles with different pore structures. The microstructural and property evolutions during sintering of the coatings were systematically studied compared with traditionally structured coatings. The effect of pore morphology on its sintering behavior was analyzed by quasi-in-situ observation of microstructure evolution. Results show that the anti-sintering performance of plasma-sprayed coating can be improved by adjusting the pore structure of coating with porous unmelted particles. In particular, the introduction of unmelted particles with coarse-sized pores can ensure that the coating has excellent thermal and mechanical properties for a long time. The results of this study provide guidance for structural design of anti-sintering plasma-sprayed coatings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call