Abstract

This paper considers the problem of distributed optimization over time-varying graphs. For the case of undirected graphs, we introduce a distributed algorithm, referred to as DIGing, based on a combination of a distributed inexact gradient method and a gradient tracking technique. The DIGing algorithm uses doubly stochastic mixing matrices and employs fixed step-sizes and, yet, drives all the agents' iterates to a global and consensual minimizer. When the graphs are directed, in which case the implementation of doubly stochastic mixing matrices is unrealistic, we construct an algorithm that incorporates the push-sum protocol into the DIGing structure, thus obtaining the Push-DIGing algorithm. Push-DIGing uses column stochastic matrices and fixed step-sizes, but it still converges to a global and consensual minimizer. Under the strong convexity assumption, we prove that the algorithms converge at R-linear (geometric) rates as long as the step-sizes do not exceed some upper bounds. We establish explicit est...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.