Abstract

Acid rain is a worldwide problem because of the emission of acidic gases into the atmosphere, leading to the acidification of first-order streams and aggravation of fresh water shortage. Therefore, it is of great importance to develop an environmentally friendly method for removing acid from water. Herein, an advanced technology that can achieve aqueous acid purification using solar energy is realized with Ti3C2Tx MXene/polyaniline (PANI) hybrid non-woven fabrics (MPs) through interfacial solar vapor generation, with PANI acting as an acid absorber through the doping process. Benefiting from the porous structure and crumpled micro-surface of MPs, a high evaporation rate of 2.65 kg m-2 h-1 with an efficiency of 93.7% can be achieved under one-sun illumination. Moreover, MPs present an even higher evaporation rate of 2.83 kg m-2 h-1 in high concentration aqueous acid and can generate clean water with a pH higher than 6.5. More importantly, thanks to the unique reversible doping process of PANI, when used as an aqueous acid purifier, MPs show good stability and reusability after dedoping. Our work sheds light on an efficient strategy for dealing with aqueous acid and acid rain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call