Abstract

Na4Fe3(PO4)2(P2O7) (NFPP) has been considered a promising cathode material for sodium-ion batteries (SIBs) owing to its environmental friendliness and economic viability. However, its electrochemical performance is constrained by connatural low electronic conductivity and inadequate sodium ion diffusion. Herein, a high-entropy substitution strategy is employed in NFPP to address these limitations. Ex situ X-ray diffraction analysis reveals a single-phase electrochemical reaction during the sodiation/desodiation processes and the increased configurational entropy in HE-NFPP endows an enhanced structure, which results in a minimal volume variation of only 1.83%. Kinetic analysis and density functional theory calculation further confirm that the orbital hybrid synergy of high-entropy transition metals offers a favorable electronic structure, which efficaciously boosts the charge transfer kinetics and optimizes the sodium ion diffusion channel. Based on this versatile strategy, the as-prepared high-entropy Na4Fe2.5Mn0.1Mg0.1Co0.1Ni0.1Cu0.1(PO4)2(P2O7) (HE-NFPP) cathode can deliver a prominent rate performance of 55mAhg-1 at 10Ag-1 and an ultra-long cycling lifespan of over 18000cycles at 5Ag-1. When paired with a hard carbon (HC) anode, HE-NFPP//HC full cell exhibits a favorable cycling durability of 1000cycles. This high-entropy engineering offers a feasible route to improve the electrochemical performance of NFPP and provides a blueprint for exploring high-performance SIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.