Abstract

In response to the shortcomings of cobalt-rich cathodes, iron-based perovskite oxides appear as promising alternatives for solid oxide fuel cells (SOFCs). However, their inferior electrochemical performance at reduced temperatures (<700 °C) becomes a major bottleneck for future progress. Here, a novel cobalt-free perovskite Ba0.75Sr0.25Fe0.875Ga0.125O3−δ (BSFG) is developed as an efficient oxygen reduction electrode for SOFCs, featuring cubic-symmetry structure, large oxygen vacancy concentration and fast oxygen transport. Benefiting from these merits, cells incorporated with BSFG achieve exceptionally high electrochemical performance, as evidenced by a low polarization area-specific resistance of 0.074 Ω cm2 and a high peak power density of 1145 mW cm−2 at 600 °C. Meanwhile, a robust short-term performance stability of BSFG cathode can be ascribed to the stable crystalline structure and favorable thermal expansion behavior. First-principles computations are also conducted to understanding the superior activity and durability toward oxygen reduction reaction. These pave the way for rationally developing highly active and robust cobalt-free perovskite-type cathode materials for reduced-temperature SOFCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call