Abstract

A symmetrical Fe2O3/BaCO3 hexagonal cone structure having a height of 10 μm and an edge length of ~4 μm is reported, obtained using a common solvothermal process and a mirror growth process. Focused ion beam and high-resolution transmission electron microscopy techniques revealed that α-Fe2O3 was the single crystal feature present. Ba ions contributed to the formation of symmetrical structures exhibited in the final composites. Subsequently, porous magnetic symmetric hexagonal cone structures were used to study the observed intense electromagnetic wave interference. Electromagnetic absorption performance studies at 2–18 GHz indicated stronger attenuation electromagnetic wave ability as compared to other shapes such as spindles, spheres, cubes, and rods. The maximum absorption frequency bandwidth was at 7.2 GHz with a coating thickness d = 1.5 mm. Special structures and the absence of BaCO3 likely played a vital role in the excellent electromagnetic absorption properties described in this research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.